Methods for Improving Protein Disorder Prediction

نویسندگان

  • Slobodan Vucetic
  • Predrag Radivojac
  • Zoran Obradovic
  • Celeste J. Brown
  • A. Keith Dunker
چکیده

In this paper we propose several methods for improving prediction of protein disorder. These include attribute construction from protein sequence, choice of classifier and postprocessing. While ensembles of neural networks achieved the higher accuracy, the difference as compared to logistic regression classifiers was smaller then 1%. Bagging of neural networks, where moving averages over windows of length 61 were used for attribute construction, combined with postprocessing by averaging predictions over windows of length 81 resulted in 82.6% accuracy for a larger set of ordered and disordered proteins than used previously. This result was a significant improvement over previous methodology, which gave an accuracy of 70.2%. Moreover, unlike the previous methodology, the modified attribute construction allowed prediction at protein ends.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods

Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...

متن کامل

Protein Secondary Structure Prediction: a Literature Review with Focus on Machine Learning Approaches

DNA sequence, containing all genetic traits is not a functional entity. Instead, it transfers to protein sequences by transcription and translation processes. This protein sequence takes on a 3D structure later, which is a functional unit and can manage biological interactions using the information encoded in DNA. Every life process one can figure is undertaken by proteins with specific functio...

متن کامل

Improving biological activity prediction of protein kinase inhibitors using artificial neural network and partial least square methods

Introduction: Protein kinase causes many diseases, including cancer; therefore, inhibiting them plays an important role in the treatment of many diseases. Traditional discovery inhibitors of this enzyme is a time-consuming and costly process. Finding a reliable computer-aided drug discovery tools which can detect the inhibitors will reduce the cost. In this study, it is attempted to separate ki...

متن کامل

Prediction of Protein Sub-Mitochondria Locations Using Protein Interaction Networks

Background: Prediction of the protein localization is among the most important issues in the bioinformatics that is used for the prediction of the proteins in the cells and organelles such as mitochondria. In this study, several machine learning algorithms are applied for the prediction of the intracellular protein locations. These algorithms use the features extracted from pro...

متن کامل

Protein-Protein Interaction Analysis of Common Top Genes in Obsessive-Compulsive disorder (OCD) and Schizophrenia: Towards New Drug Approach

Comorbidty is common among psychiatric disorders including obsessive-compulsive disorder and schizophrenia with a high rate. Many studies suggested that the disorders may have same etiological bases. In this regard, shared pathways of glutamate, dopaminergic, and serotonin are the known ones. Here, the common significant genes are examined to understand the possible molecular origin of the diso...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001